Above the Flood: Elevating Your Floodprone House FEMA 347/ May 2000 # Acknowledgments The support and contributions of the following individuals and organizations helped make the preparation of this publication possible: ### James L. Witt Director Federal Emergency Management Agency #### Michael J. Armstrong Associate Director for Mitigation Federal Emergency Management Agency ### John Copenhaver Regional Director FEMA Region IV Atlanta, Georgia ### Clifford Oliver, CEM Chief Program Policy and Assessment Branch Mitigation Directorate Federal Emergency Management Agency ### Paul Tertell, P.E. Senior Engineer and Project Officer Program Policy and Assessment Branch Mitigation Directorate Federal Emergency Management Agency ### The Staff of the Mitigation Division FEMA Region IV Atlanta, Georgia Cover photograph provided by The Weather Channel. | : | |---| | | ### Table of Contents | Chapter 1 ntroduction . | | 1-1 | |---|--|-----| | Chapter 2
Homeowner Opt | | | | National Flood | Insurance Program | 2-1 | | Technical and F | Regulatory Guidance from FEMA | 2-5 | | Chapter 3
Overview of the | e Elevation Techniques | 3-1 | | Technique 1 – F
and Raise the L | Extend the Walls of the House Upward
owest Floor | 3-1 | | House to Non-I | Convert the Existing Lower Area of the
Habitable Space and Build a New Second
Space | 3-4 | | Technique 3 – I
Attached, and I | Lift the Entire House, With the Floor Slab
Build a New Foundation To Elevate the House | 3-6 | | Chapter 4
Case Studies | | 4-1 | | Technique 1 – I
Raise the Lowe | Extend the Walls of the House Upward and street Floor | 4-1 | | Case Study | y 1 | 4-1 | | Case Study | y 2 | 4-7 | | | y 3 | | | to Non-Habital | Convert the Existing Lower Area of the House
ble Space and Build a New Second Story for | 413 | | | y 4 | | | | y 5 | | | | y 6 | | | | of Techniques 1 and 2 | | | | | | | Case S | Study 74-24 | |---------------------------------|---| | Technique
Attached, : | 3 – Lift the Entire House, With the Floor Slab
and Build a New Foundation To Elevate the House4-28 | | Case S | Study 84-28 | | Chapter 5
Summary | 5-1 | | Chapter 6
Additional | Information6-1 | | Acknowle | dgmentsA-1 | | Figures | | | Figure 1 | Hurricane Andrew was a Category 4 hurricane with peak winds of over 140 mph1-1 | | Figure 2 | Damage to houses and other buildings was severe1-2 | | Figure 3 | Wind damage1-2 | | Figure 4 | In low-lying areas, wind and rain damage to interior finishes and furnishings was exacerbated by flood waters | | Figure 5 | A FIRM presents information about flood hazards in a community, including the SFHA (dark-tinted area), 500-year floodplain (light-tinted area), Base Flood Elevations (BFEs) (number in parentheses in dark-tinted area), and flood insurance zones (AE and X in this example). 2-2 | | Figure 6 | In a new, substantially improved, or substantially damaged building in an A zone, the elevation of the lowest floor must be at or above the BFE2-4 | | Figure 7 | Technique 1 – Extend the walls of the house upward and raise the lowest floor2-6 | | Figure 8 | Technique 2 – Convert the existing lower area of the house to non-habitable space and build a new second story for living space | | | Technique 3 – Lift the entire house, with the floor slab attached, and build a new foundation to elevate the house | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------| | Figure 10 | The first step in Technique 1 is removing the roof3-1 | | Figure 11 | The tops of the walls and bottoms of the window openings are raised with concrete blocks3-2 | | Figure 12 | Openings are created in the walls near the ground3-3 | | Figure 13 | A new wood-frame lowest floor is constructed above the flood level, and the roof, windows, and doors are reinstalled | | Figure 14 | An alternative to building an elevated wood-frame floor is installing a new, elevated concrete slab floor on fill placed over the old slab | | Figure 15 | The new second-story floor and walls are built on top of the existing lower story | | Figure 16 | The new second-story walls are covered with siding or stucco | | Figure 17 | Trenches and tunnels under the slab provide access for the jacks and I-beams that will lift the house | | Figure 18 | With I-beams and jacks in place, the house is ready to be lifted | | Figure 19 | The house is temporarily supported on cribbing3-7 | | | New, extended foundation walls are constructed with concrete blocks | | Figure 21 | Elevated house and slab on new, extended foundation walls | | Figure 22 | The front of the house at the beginning of the project4- | | Figure 23 | Wiew from the back of the house45 | | Figure 24 | Another view of the extended walls4- | | Ü | This view through the garage door reveals the different levels of the elevated slab floor, in the background, and the unelevated garage floor4-3 | |-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Figure 26 | The roof has been rebuilt with the salvaged trusses, and most of the new concrete slab has been poured on top of the sand fill4-3 | | Figure 27 | As work progresses, the elevated house begins to take shape4-4 | | Figure 28 | The bottoms of the original window openings are raised with concrete blocks | | Figure 29 | Windows and doors are added4-5 | | Figure 30 | Interior partition walls and utilities are added4-5 | | Figure 31 | This view from the rear of the house shows that the project is almost complete4-6 | | Figure 32 | The final product: an attractive elevated house that meets local floodplain management requirements and is now much less vulnerable to flood damage46 | | Figure 33 | Wood framing for a new concrete staircase that will provide access to the elevated floor47 | | Figure 34 | After the new concrete slab is poured, wood framing for interior walls is added4-8 | | Figure 35 | The electrical system is upgraded to meet current code requirements4-8 | | Figure 36 | In this view from the front of the house, the amount of elevation is shown by the rows of concrete block on the tops of the original walls and by the raised window openings | | Figure 37 | The project nears completion4-9 | | Figure 38 | The elevated house is now complete4-10 | | Figure 39 | The roof of this house was removed as a single piece; the trusses were held together with bracing and portions of the original roof sheathing4-10 | | Figure 40 | After the roof was removed and the storm-damaged interior gutted, the walls of the house were extended upward and a new bond beam added at the top4-11 | |-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Figure 41 | Note the new bond beam at the top of the extended wall, the new concrete tiedown column at the corner, and the raised window opening4-11 | | Figure 42 | This view from the back of the house shows the height of the elevated slab floor4-12 | | Figure 43 | The owner of this house decided to use light-gauge metal framing for the new interior walls412 | | Figure 44 | The final product413 | | Figure 45 | Concrete bond beams similar to those shown earlier were used in this house, but here they were installed on the tops of both the original first-story walls and the new reinforced concrete block second-story walls | | Figure 46 | Concrete tiedown columns, such as the one to the left of the window in this photograph, were also used in this house4-14 | | Figure 47 | The tiedown columns extend down from the new second-story walls and into the original first-floor walls 4-14 | | Figure 48 | Wood 2 by 4 studs were used to frame the interior walls of the second story4-15 | | Figure 49 | The house nears completion4-15 | | Figure 50 | Not only does the completed house meet the requirements of local codes and the NFIP regulations, it now includes a substantial amount of parking and storage space below the new living level4-16 | | Figure 51 | The storm-damaged first story has been gutted in preparation for construction | | Figure 52 | The existing first-story walls have been strengthened by the addition of concrete block4-17 | | Figure 53 | As the second story takes shape, its size in relation to the size of the original house becomes apparent | | Figure 54 | Metal framing is used for the new second story, including the walls and roof support system4-18 | |-----------|------------------------------------------------------------------------------------------------------------------------------------------------------| | Figure 55 | Metal framing also supports the floor of the new second story4-18 | | Figure 56 | One advantage of metal framing is its relatively light weight4-19 | | Figure 57 | The project progresses with wiring and other utility work419 | | Figure 58 | The new second story nears completion4-20 | | Figure 59 | The exterior walls consist of prefabricated concrete panels | | Figure 60 | The completed house has the appearance of a typical two-story residence4-21 | | Figure 61 | The wood-frame second story takes shape4-21 | | Figure 62 | After the wood framing was completed, the roof and exterior wall sheathing were added4-22 | | Figure 63 | The new second-story walls are securely connected to the original first-floor walls with galvanized metal hurricane straps | | Figure 64 | From the outside, the completed house, with its stucco walls, looks like a conventional masonry house 4-23 | | Figure 65 | After the house was gutted, the walls were extended upward with reinforced concrete block424 | | Figure 66 | The new second-story walls as seen from inside the garage4-25 | | Figure 67 | The extended first-story walls425 | | Figure 68 | Rather than install a new concrete slab on compacted fill, the owner of this house chose to build a new wood-frame floor above the old concrete slab | | Figure 69 | Wood framing is used for the new second story426 | | Ü | Metal hurricane straps are used to tie the structural members together and create a continuous load path from the roof to the foundation4-27 | |-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Figure 71 | All plumbing and electrical renovation work must be performed according to state and local code requirements4-27 | | Figure 72 | The completed house is compliant with local floodplain management requirements, is more resistant to flood damage, and provides additional living area above the flood level | | Figure 73 | Like the houses shown previously, this one-story house, with its concrete block walls, concrete slab foundation, and attached garage, is typical of the houses in the area affected by Hurricane Andrew | | Figure 74 | In this variation of Technique 3, steel beams are inserted through the walls of the house rather than under the slab4-29 | | Figure 75 | Electrical lines and other utilities were disconnected early in the project429 | | Figure 76 | Inside the house, workers drill holes in the concrete slab 4-30 | | Figure 77 | install anchors 4-30 | | Figure 78 | and use hangers to attach the anchors to the grid of steel beams4-31 | | Figure 79 | The anchors and hangers connect the slab securely to the beams, enabling the beams to raise the slab along with the rest of the house | | Figure 80 | Lifting the house, while simple in theory, is complicated by the need to ensure an equal amount of lift at each jack throughout the process | | Figure 81 | The house and slab were raised one full story4-32 | | Figure 82 | While the jacks and beams supported the house, new steel foundation members were installed below | ### TABLE OF CONTENTS | Figure 83 | Concrete blocks were brought to the site4-33 | |-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Figure 84 | and used to build the lower-level walls4-34 | | Figure 85 | The completed house, with lower-level space for parking and storage and upper-level living space, looks as if it were originally designed and built as a two-story structure. 4-34 | ### Introduction Hurricane Andrew damaged hundreds of homes in south Florida. In the early morning hours of August 24, 1992, Hurricane Andrew struck south Florida with high winds and heavy rains (Figure 1). Andrew destroyed tens of thousands of homes (Figure 2) and left 180,000 people homeless. The resulting property damage totaled over 30 billion dollars. Figure 1 Hurricane Andrew was a Category 4 hurricane with peak winds of over 140 mph. ### WARNING The house elevation techniques described in this publication are appropriate only for houses **not** subject to the severe coastal flood hazards associated with high-velocity wave action from storms or seismic sources. See pages 2-2 through 2-4 for more information. The widespread destruction caused by Andrew was due primarily to high winds (Figure 3). However, flood waters contributed to the damage in low-lying coastal areas of central and southern Miami-Dade County (Figure 4). Figure 3 Wind damage. Figure 4 In low-lying areas, wind and rain damage to interior finishes and furnishings was exacerbated by flood waters. In a **slab-on-grade** house, the floor of the house is formed by a concrete slab that sits directly on the ground. In the repair and reconstruction efforts that followed Hurricane Andrew, owners of damaged houses had opportunities to modify their houses to protect them from future flood damage. One effective method of protecting a house from flooding is elevating the habitable areas of the house above the flood level. Almost all single-family homes in Miami-Dade County are constructed with reinforced masonry block walls on a slab-on-grade foundation. Houses of this type are the most difficult to elevate for flood protection. This publication describes how homeowners in Miami-Dade County elevated their damaged slab-on-grade masonry houses following the devastating effects of Hurricane Andrew. DEFINITION The Federal Emergency Management Agency (FEMA) is the independent Federal agency that administers the National Flood Insurance Program (NFIP). Chapter 2 of this publication explains how the **Federal Emergency Management Agency (FEMA)** provided technical and regulatory guidance to Miami-Dade County homeowners concerning alternative house elevation techniques. Chapter 3 presents an overview of three common techniques appropriate for a variety of houses on different types of foundations. Chapter 4 uses eight illustrated case studies to demonstrate how Miami-Dade County homeowners used the three techniques to elevate their slab-on-grade houses. The benefits of elevating a floodprone house are summarized in Chapter 5. For information about obtaining videotape and CD-ROM versions of this publication, refer to Chapter 6. ## Homeowner Options FEMA provided on-site guidance to homeowners concerning repair options compliant with the local floodplain management ordinance. ### **National Flood Insurance Program** The repair of damaged houses in floodprone areas of Miami-Dade County is governed by floodplain management regulations enacted by the county as a participant in the National Flood Insurance Program (NFIP). The Administered by FEMA NFIP is a Federal program that helps communities reduce flood risks and enables property owners and renters to buy flood insurance. The program is administered by FEMA. is the area inundated by the flood that has a 1-percent probability of being equaled or exceeded during any given year. The NFIP regulations refer to this flood as the "base flood." Communities participate in the NFIP by enacting and enforcing floodplain management regulations to reduce future flood risks. At a minimum, these regulations govern construction in the Special Flood Hazard Areas (SFHAs) shown on Flood Insurance Rate Maps (FIRMs) issued by FEMA (Figure 5). The Base Flood Elevation (BFE) is the elevation of the flood that has a 1-percent probability of being equaled or exceeded in any given year. The NFIP regulations refer to this flood as the "base flood." Note that the SFHA in the example in Figure 5 is designated Zone AE. This zone is only one of several applied to SFHAs under the NFIP, including V, VE, V1-V30, A, AE, A1-A30, AO, and AH. These zones indicate differences in the types and severity of flood hazards in SFHAs. For the purposes of this publication, it is sufficient to focus on the basic differences between the two main types of SFHA zones—V zones and A zones. The distinction is important because regulatory requirements associated with V zones and A zones differ significantly. As explained later in this chapter, these requirements affect the types of building elevation techniques that may be used under the NFIP. insurance zones (AE and X in this example). V zones (VE, V1-V30, and V) identify Coastal High Hazard Areas, which are SFHAs subject to high-velocity wave action from storms or seismic sources. The hazards in V zones include not only inundation by flood waters, but also the impact of waves and waterborne debris and the effects of severe scour and erosion. In contrast, A zones identify SFHAs not within the Coastal High Hazard Area. Although A zones and V zones both identify areas at risk from the base flood, the severity of the flood hazard is less in A zones, primarily because high-velocity wave action either is not present or is less significant than in V zones. Consequently, wave and debris impact, erosion, and scour hazards are less severe in A zones. A participating community must regulate three types of building construction in the SFHA (in both V zones and A zones): - new construction - substantial improvements to existing buildings - · repairs of substantially damaged buildings For floodplain management purposes, the NFIP regulations, at Section 59.1 of the U.S. Code of Federal Regulations (CFR), define new construction, substantial improvement, and substantial damage as follows: - New construction structures for which the start of construction commenced on or after the effective date of a floodplain management regulation adopted by a community and includes any subsequent improvements to such structures. - Substantial improvement any reconstruction, rehabilitation, addition, or other improvement of a structure, the cost of which equals or exceeds 50 percent of the market value of the structure before the start of construction of the improvement. - Substantial damage damage of any origin sustained by a structure whereby the cost of restoring the structure to its before damaged condition would equal or exceed 50 percent of the market value of the structure before the damage occurred. If a building is significantly damaged by any cause, not just by flooding, the community's floodplain administrator—who may or may not be the local building official—must determine whether the building is *substantially damaged*, as defined above. FEMA does not play a direct role in this determination. Rather, FEMA's role and that of the NFIP State Coordinator is to provide technical assistance to local officials who administer community ordinances that meet the NFIP minimum floodplain management requirements. Each participating community must require that new residential buildings, substantially improved residential buildings, and substantially damaged residential buildings be elevated above the BFE so that the potential for future flood damage is reduced. The elevation techniques that may be used under the NFIP depend on whether the building to be elevated is in a V zone or an A zone. In a V zone, the NFIP regulations require that the building be elevated on an open foundation (e.g., pilings, posts, piers) and that the bottom of the **lowest horizontal structural member** (e.g., floor support beam) be at or above the BFE. In other words, a building in a V zone may not be supported by continuous walls below the BFE. The basis for this requirement is that continuous walls, and therefore the building they support, are more susceptible to damage from the additional hazards present in V zones—wave impact, waterborne debris impact, scour, and erosion, as discussed previously. Under the NFIP regulations, the lowest floor of a house or other building is the lowest floor of the lowest enclosed area, including a basement. In A zones, where flood hazards are less severe, buildings may be elevated either on an open foundation or on continuous foundation walls below the BFE (Figure 6). Regardless of the type of foundation used, A-zone buildings must be elevated so that the **lowest floor** is at or above the BFE, as shown in Figure 6. If continuous walls are used below the BFE, they must be equipped with openings that allow flood waters to flow into and out of the area enclosed by the walls (Figure 6). Allowing the entry and exit of flood waters ensures that water pressures will be the same on both sides of the walls and reduces the likelihood that water pressure will cause the walls to fail. **Figure 6**In a new, substantially improved, or substantially damaged building in an A zone, the elevation of the lowest floor must be at or above the BFE. It is important to note that each of the elevation techniques described and illustrated in this publication depends on the use of continuous walls below the BFE. Therefore, under the NFIP regulations, these techniques may be used only for buildings in A zones, such as the eight case study buildings presented in Chapter 4. ### **Technical and Regulatory Guidance from FEMA** In the aftermath of Hurricane Andrew, homeowners wanted to begin repairing their damaged houses as soon as possible. They needed immediate guidance concerning repair methods and the floodplain management requirements enforced by Miami-Dade County as a participant in the NFIP. To respond to these needs under the catastrophic conditions resulting from Hurricane Andrew, FEMA, in partnership with other Federal agencies, the State of Florida, and Miami-Dade County, established a Reconstruction Information Center (RIC) in the area where the greatest damage had occurred. At the RIC, owners of substantially damaged houses in SFHAs learned that they had two options for complying with the requirement to elevate the lowest floor to or above the flood level: - 1. Demolish the remnants of the house and build a new house on the same site with an elevated lowest floor, or - 2. Repair the house and elevate the lowest floor as part of the repair process. Owners of substantially damaged houses in SFHAs that remained structurally sound usually chose the second option—repairing the house and elevating the lowest floor. Depending on how the houses were constructed, their owners had a choice of up to three techniques for elevating the lowest floor (as illustrated on the following pages): - 1. Extend the walls of the house upward and raise the lowest floor (Figure 7). - 2. Convert the existing lower area of the house to non-habitable space and build a new second story for living space (Figure 8). - 3. Lift the entire house, with the floor slab attached, and build a new foundation to elevate the house (Figure 9). Chapter 3 presents an overview of the three techniques. Chapter 4 covers the techniques in detail and shows how they were used in the repair of eight substantially damaged houses in south Florida. In major disasters, FEMA and the affected state will often open one or more Disaster Recovery Centers (DRCs). At a DRC, homeowners and other interested parties can obtain information about how to reduce future flood losses through hazard mitigation. House at the time **Hurricane Andrew** struck Figure 7 Technique 1 -Extend the walls of 티티 the house upward and raise the lowest floor. **Original Level** of the Lowest Floor **Extended Walls** Raised Window Opening Substantially damaged house undergoing repairs that will bring it into compliance with Miami-Dade County floodplain management requirements New, Raised Floor House after Openings for the Entry and Exit of Flood Waters completion of repairs Figure 8 Technique 2 – Convert the existing lower area of the house to non-habitable space and build a new second story for living space. House at the time Hurricane Andrew struck Figure 9 Technique 3 -Lift the entire house, with the floor slab attached, and build a new foundation to elevate the house. **Substantially** damaged house undergoing repairs that will bring it into compliance with Miami-Dade **County floodplain** management requirements # Overview of the Elevation Techniques Homeowners had a choice of three techniques for elevating their substantially damaged houses. ### **Technique 1– Extend the Walls of the House Upward and Raise the Lowest Floor** Technique 1 is appropriate for houses with concrete or masonry walls, but not for houses with other types of walls, such as those framed with wood studs, which would be more vulnerable to flood damage. This technique is usually appropriate when the depth of the base flood at the house is no more than 4 or 5 feet above grade. The elevation process begins with the temporary removal of the roof and roof framing, in a single piece if possible (Figure 10). This is commonly done with a crane. The roof is then stored on site so that it can be reinstalled later. The next step is to remove the windows and doors. Figure 10 The first step in Technique 1 is removing the roof. After the roof, windows, and doors are removed, several courses of concrete block are added to the tops of the existing walls and to the bottoms of the window openings (Figure 11). A corresponding number of blocks are removed from the tops of the window openings so that the size of the windows will remain the same. In addition, although not shown in Figure 11, concrete bond beams are formed in place at the tops of the extended walls to provide structural reinforcement. Figure 11 The tops of the walls and bottoms of the window openings are raised with concrete blocks. Blocks are removed from the walls of the house at selected locations within 1 foot of the ground (Figure 12). The resulting openings will allow flood waters to flow into and out of the lower area of the house so that the water pressures on both sides of the walls will remain the same. The roof and windows are then replaced, and a new wood-frame floor is constructed above the flood level (Figure 13). Figure 12 Openings are created in the walls near the ground. Figure 13 A new wood-frame lowest floor is constructed above the flood level, and the roof, windows, and doors are reinstalled. A homeowner who chooses Technique 1 may decide to build a new concrete slab floor instead of a wood floor (Figure 14). When this option is chosen, compacted fill dirt or gravel is placed on top of the old slab and the new slab floor is poured on top. Because the area below the new floor is filled with dirt or gravel, wall openings are not required. Figure 14 An alternative to building an elevated wood-frame floor is installing a new, elevated concrete slab floor on fill placed over the old slab. ### Technique 2 – Convert the Existing Lower Area of the House to Non-Habitable Space and Build a New Second Story for Living Space When the depth of the base flood at the house is more than 4 or 5 feet above grade, the homeowner will usually find it more practical to add an entire second story to the house. The lower area of the house is then converted to non-habitable space that may be used only for parking, storage, or access to the upper story. Flood waters may still enter this non-habitable lower area. For this reason, Technique 2, like Technique 1, is appropriate for houses with concrete or masonry walls, but not houses with other types of walls. As in Technique 1, the repairs begin with the temporary removal of the roof and roof framing (Figure 10). After the roof is removed, construction of the new second story begins. First, a new wood-frame floor is built on top of the existing lower-story walls. The second-story walls are framed with metal or wood studs and set in place on the floor (Figure 15). Figure 15 The new second-story floor and walls are built on top of the existing lower story. Some homeowners prefer that the second story be constructed of masonry, but wood- or metal-framing is more common, primarily because it is lighter and less expensive. The roof is replaced, and blocks are removed from the walls to allow flood waters to enter and exit. Exterior sheathing is then added to the framed walls of the second story, the new windows are installed, and siding or stucco is applied to the sheathing (Figure 16). Figure 16 The new second-story walls are covered with siding or stucco. ### Technique 3 – Lift the Entire House, With the Floor Slab Attached, and Build a New Foundation To Elevate the House. Technique 3 can be used for houses with wood-frame or masonry walls and is appropriate for a wide range of flood levels. This technique is very different from Techniques 1 and 2. Here, the entire house, including its slab floor, is lifted above the flood level and new masonry foundation walls are built below it. The most common method of lifting the house is to place metal I-beams below the slab and raise the house with jacks. First, trenches are dug to expose the foundation walls immediately below the slab. Holes are then cut in the foundation walls at intervals around the house, and tunnels are dug under the slab (Figure 17). Jacks are placed in the trenches and large I-beams are inserted through the tunnels and allowed to rest on the jacks. Smaller I-beams are then inserted through the tunnels at right angles to the larger beams and positioned on top of them. The smaller beams support the slab when the house is raised (Figure 18). Figure 17 Trenches and tunnels under the slab provide access for the Jacks and l-beams that will lift the house. Figure 18 With I-beams and jacks in place, the house is ready to be lifted. The house is then jacked up. When the jacks have extended as far as possible, the house must be supported temporarily while the jacks are raised. Both the house and the jacks are usually supported on "cribbing"—temporary piles of crisscrossed timbers (Figure 19). The jacks are then used to raise the house higher. Figure 19 The house is temporarily supported on cribbing. This process is repeated until the house is raised to the desired height. The foundation walls are then extended upward with additional rows of concrete block (Figure 20). As in the previous techniques, openings are made in the walls within 1 foot of the ground so that flood waters will be able to flow into and out of the area below the elevated floor. The jacks and beams are removed, and the openings left around the beams are filled with blocks (Figure 21). Figure 20 New, extended foundation walls are constructed with concrete blocks. Figure 21 Elevated house and slab on new, extended foundation walls.